Anmeldung zum Seminar
Wenn Sie an diesem Seminar teilnehmen wollen, füllen Sie folgendes Formular aus.Die mit * gekennzeichneten Felder müssen ausgefüllt werden.
Dieser Kurs baut auf der in der Softwareentwicklung vorherrschenden DevOps-Praxis auf und erweitert sie, um Modelle für maschinelles Lernen (ML) zu erstellen, zu trainieren und bereitzustellen. Die Bedeutung von Daten, Modellen und Code für erfolgreiche ML-Bereitstellungen wird vermittelt. Im Kurs wird der Einsatz von Tools, Automatisierung, Prozessen und Teamwork demonstriert, um die Herausforderungen zu bewältigen, die mit Übergaben zwischen Dateningenieuren, Datenwissenschaftlern, Softwareentwicklern und dem Betrieb verbunden sind. Die Verwendung von Werkzeugen und Prozessen zur Überwachung und Ergreifung von Maßnahmen wird diskutiert, wenn die Modellvorhersage in der Produktion von vereinbarten Leistungskennzahlen abweicht.
- Module 0: Welcome
- Module 1: Introduction to MLOps
- Module 2: MLOps Development
- Module 3: MLOps Deployment
- Module 4: Model Monitoring and Operations
- Module 5: Wrap-up